Step of Proof: all_functionality_wrt_iff
9,38
postcript
pdf
Inference at
*
I
of proof for Lemma
all
functionality
wrt
iff
:
S
,
T
:Type,
P
,
Q
:(
S
). (
S
=
T
)
(
x
:
S
.
P
(
x
)
Q
(
x
))
((
x
:
S
.
P
(
x
))
(
y
:
T
.
Q
(
y
)))
latex
by
InteriorProof
((((GenUnivCD)
CollapseTHENM (HypBackchain))
)
CollapseTHEN (
CollapseTHEN (
(Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n)) (first_tok :t
CollapseTHEN (
) inil_term)))
latex
C
.
Definitions
P
Q
,
P
Q
,
P
Q
,
t
T
,
x
(
s
)
,
P
Q
,
x
:
A
.
B
(
x
)
,
Lemmas
iff
wf
origin